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The force of a pulsed magnetic field on conductors is used in the induction-dynamic drive 
of switching devices, in the magnetic pulse processing of metals, and in the high-speed induc- 
tion projection of conductors. In investigating electromagnetic processes the penetration of 
the electromagnetic field (~F) into conductors is generally treated in the quasistationary 
approximation. In [i] the magnetic vector potential (}~P) A was chosen as the fundamental 
electromagnetic quantity, and the appropriate equations were written down. In [2, 3] two- 
dimensional quasistationary EMF were calculated by the integral equations method (IEM), and 
in [4, 5] by the finite difference method ~FDM). In [6] an equivalent circuit was used to 
investigate a "cylindrical" pulsed-dynamic system (PDS); the inductor and conductor were re- 
placed by hollow cylinders of thickness equal to the equivalent depth of penetration of the 
E~ for a frequency corresponding to the discharge of a capacitor bank (CB) through a "dead" 
inductor. In [7] the IEH was used to investigate a PDS consisting of a multiturn inductor in 
the form of a solenoid and an armature in the form of a massive cylinder, neglecting the 
penetration of the EMF into the inductor, which is the case in systems of the type considered, 
particularly for the acceleration of bodies of small mass, when it is necessary to decrease 
the inductance of the inductor in order to achieve optimum transformation of the energy of the 
CB into energy of the accelerated body. In this case it is necessary to employ systems whose 
inductors have a small number of massive turns. Such inductors are preferable also from the 
point of view of Joule heating. The IEM can be used to investgate PDS when account is taken 
of the penetration of the EMF into the inductor [7], but'in this case a region of primary cur- 
rents is also developed in parts with uniform properties, which leads to an appreciable in- 
crease in the number of unknowns in the system of difference equations. The order of the 
system of differential equations obtained with the IEM is lower than that obtained with the 
FDM, but the matrix of the coefficients is completely filled, while a band matrix is obtained 
with the FDH. In certain cases the FDM is more advantageous because of the existence of pro- 
grams which require less machine time and storage [5]. However, in using the FDM for systems 
with multiturn inductors it is necessary to calculate not only the spatial distribution of the 
MVP, but also to determine the time dependence of the voltages across the inductor turns. 

In the present article we present a computational scheme and the results of a mathemati- 
cal study of the acceleration of conductors in the pulsed magnetic field of a massive cylin- 
drical multiturn inductor through which a CB is discharged (Fig. i), taking account of the 
penetration of the field into the inductor and conductor. The accelerated conductor is a 
solid cylinder of mass m coaxial with the inductor. In general this system is not axisym- 
metric, and its investigation requires the computation of a three-dimensional EMF. However, 
the larger the diameter of the inductor and the smaller the width and pitch of a turn, the 
more properly can a multiturn inductor be considered axisymmetric, and a two-dimensional EMF 
calculated in the (r, z) plane. There are PDS with an inductor consisting of series connected 
rings. Since in the present article we treat the problem in the axisymmetric approximation, 
the HVP has only one nonzero component A = {0, A, 0}. 

As basic quantities we choose the following: 

[~ ' CU o CU~ / ~o a / 2:~C CU o Xb t~ r  o i,b rob--  ,~ , 
tb= --(2~C)2' Xb= - -  Eb== ~ ' Ub=-~ '  Ab=2~x b' v~ 

where ~o is the permeability of vacuum, C is the capacitance of the CB, Yb is the electrical 
conductivity of the inductor material, and Uo is the initial voltage across the CB. 
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Supplementing the electromagnetic equations in [i] by equations describing the mechani- 

cal processes involved in the displacement of conductors, as was done in [5], and the equa- 
tion for the CB circuit, we obtain the following system of equations for the relative quan- 

tities: 

rot Adl = .f ,/Eds; 
s 

f ,~A U k (t) 
[ - -  bT --k - ? - -  i n  the  k - t h  turn,  k = 1 . . . . .  N ,  �9 

E 
L-- Ot -- v ~ in the conductor; 

N 

~ U h (t) ~ 1 - -  id t - -  L o ~ - Roi; 
h~l 0 

S h 

i h ~- i ,  k , =  t , . . . ,  N ;  

dv ~ (~ [ OA ~ )  OA 

S c 

dx 
dt  ~V 

with the initial conditions A(0, r~ z) = 0, v(0) = 0, x(0) = xo, and the boundary conditions 
A(t, 0~ z) = 0, Ar~ ~=0. Solving Eqs. (1)-(7), we obtain the distribution of the MVP in the 

(r, z) plane and in time. In addition, we determine the time dependence of the voltages U~, 
..., U N across the turns of the inductor, the velocity v of the conductor, and its position 
x. Using these relations, we find from (2) the current density distribution, and from (4) 
the currents in the turns of the inductor and in the conductor. Since we do not consider 
Joule heating of the conductors in the present article, we assume that the electrical conduc- 
tivity Yb of the inductor and YcYb of the conductor are constant during the acceleration pro- 
cess. This assumption is valid when the magnetic induction is smaller than a critical value 
h c [811, i.e., so long as thermal effects do not begin to have an appreciable effect on the 
penetration of the magnetic field into conductors. Since the problem under consideration is 
axisynm~etric~ we solve it in the half-plane {(r, z), r > 0} in which artificial boundaries 
z < z < z k and 0 < r ~ R M are chosen at distances from the conductors such that the 
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boundary conditions at infinity are adequately satisfied on them. Thus, we assume that along 

the lines z = Zo, z = Zk, and r = R M the ~P is zero. In the calculations the boundaries 

were chosen at a distance of five characteristic lengths from the conductors, with a char- 
acteristic length taken as the maximum geometrical dimension of the system. Calculations 

showed that the error of this assumption was <1%. Thus, the exterior problem is reduced 

to an interior problem. 

In the domain considered we lay out the following net in the (r, z) plane: 

= {(gj ,  Yi), Zi : h i ,  Zj+ i : Zj  + h i +  1, ] = 1 . . . . .  K - -  l ;  

~ =  hi, r ~  : r i @  h~+~, i =  t . . . . .  M - -  t}. 

We t a k e  h i = 0 . 5 ( h  i + h i + ~ ) ,  h i  = 0 . 5 ( h j  + h j + ~ ) ,  a n d  t h e n ,  c o m b i n i n g  E q s ~  ( l )  a n d  ( 2 ) ,  
a n d  w r i t i n g  t h e m  i n  d i f f e r e n c e  Yorm, we o S t a i n - t h e  f o l l o w i n g  e q u a t i o n  f o r  t h e  NVP: 

where 

r An r A n r A n r a n "1 = I ~ - i , j - - t - 1  i - l , j •  i+1 ~ + 1 , ~  i - i 4 | j  
AlAn ~ - -1  r.~___l"~i " ri§ h i+ l  ' 

2 2 

[ A ~ ~- A r~' �9 An - --. A n ] 
A i A n  ~ -~j hi+ 1 hj  J ' 

'U~/r  i inthe k-th turn (It ~ 1 . . . . .  N) ,  

] n . = ,  (OA)  in a conductor, 
~,3 - -  v s  i ,j  

0 outside conductors,' 

h (A  '~ - ".4:' .~ A '~ ] h~+l(A~,J-'- i,J--1) 
~ i,Z.lh~H- ~ ,~  @ ~)~ J" 

We write Eqs. (3), (4), (6), and (7) in finite difference form: 

N n 1 

- - -  z . . J  2 ..... 
h = l  / = 1  

= -~,3 --. ~,3 | t h a i  ' / : = i  . . . . .  N ,  h At  ] 
i,j=~s k \ ri 

r .  Ao-, 
At 

(x ~+~ - -  ~ ) h ~ t  = (~,~+~ + ~ ) /~ .  

The equation for the ~P is parabolic in conductors and elliptic outside them. In the re- 

gion with y = 0 we introduce the parameter Yv << Yb" It was shown in [5] that this method 
permits the use of the method of alternating directions, and the solution for Yv/Yb < 10-2 
is almost independent of Yv- Since the results of our calculations were strongly dependent 
on Yv, we used an iterative method with a stabilizing correction [9]. In this method the 
transition from step n -- i to step n is accomplished by an iterative process 

( A V _ l / 2 _ _ A n _ ~ ) / h t n _ 1 =  A1AV_~/~@ A i A V - ~ @ i f - x ,  (A v _ A v - ~ / ~ ) j A t n - 1  ~ Ae(A ~AV-1)  �9 

The iteration is stopped when Ampere's law 

C rot A d l = I  s 
L 

is satisfied with a specified error, where S is the area bounded by contour L, and I S is the 
total current flowing through surface S. As contour L we chose L~ -- the z axis closing at 
infinity -- and L2 -- the contour encompassing all the turns of the inductor. 

Calculations in [5] were performed on a moving net. The net was moved in such a way 
that the boundary of the conductor was half w~y between the nodes of the net, which permitted 
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the use of the scheme of through calculation. Such a net cannot always be chosen for the 
system we are considering, and therefore we performed the calculations on a stationary net, 

taking account of irregular nodes on the boundary of the conductor. 

In order to test the efficiency of our difference schemes for the problem of the accel- 
eration of conductors by a massive multiturn inductor, we calculated the discharge of a CB 
through a conductor of N = 7 turns of thickness equal to the equivalent depth of penetration 
of the magnetic field. A comparison of the calculated values of the current in the inductor 
with those obtained analytically ~or an inductor with a uniform current density distribution 

showed that the error of the calculation was <1%. 

A series of calculations of the acceleration of conductors by the method described above 

completely confirmed the qualitative conclusions in [6]. Good agreement was obtained in the 
range of optimum parameters for the systems studied. However, in the range of variation of 
system parameters considered, the value of the velocity of an accelerated conductor c~icu- 
lated with an equivalent circuit exceeds the value obtained by the proposed method by 20% 
for Ro = 0 and Lo = 0, and by 10% for the actual values of Ro and Lo. Obviously a systemat- 
ic error can be accounted for by the approximate method of taking account of the current dis- 

tribution over the surface of the conductors, which leads to an overestimate of the mutual 
inductance in the calculation by an equivalent circuit. On the basis of the simplicity of 
the model and the small expenditures of machine time, which is particularly important in solv- 
ing design problems, we conclude that "cylindrical" PDS can be studied with sufficient ac- 
curacy (~• using equivalent circuits if the values of the velocity obtained in the 
calculation of actual systems (Lo # 0, Ro # 0) are multiplied by 0.9. The proposed procedure 
for investigating electromagnetic processes should be used to determine the time dependence 
of the voltages across the ~urns of the inductor, the distribution of local characteristics 
over the cross section og ~ e~nJuct~m ~ ((~.~g~., the current density, the radial and axial 
stresses),, and~ ~o~ refini~ng ' tSe resu~s~ob~ai~edi ~n~calculations with an equivalent circuit. 

We present below the results of a ealculatfon for a ~e~sion with the following param- 

eters (Ffg. 2): xo = 0.025 m, DI = 0.0% m, ~2 = 0.02~ m, ~ = @~.~021m, a = 0.03 m~ 5 = 0.07 m, 
bin = 0.002 m, N = 7, C = 0.02 F, Uo = 2 kV, and m = 0.03kg, a. b~ass inductor (y = 14.7" 
i06 i/~m, and a chromium coppe~ conducto~ (y = 27.2"106 i/g.m). The graphs~ in Fig. 1 show 
the time dependence of the inductor current ii, the conductor current ic, t~e volt,age UI 
across the inductor, and the velocity v of the conductor. In this case the conducto~ ~ fs 
accelerated during almost the whole process of discharge of the CB through the system. The 
conductor experiences practically no negative accelerations, but during parts of the motion 
it moves ~ith ~a~constant velocity. The curves in Fig. 3 show ~he time dependences of the 
voltages across the turns in relative units. The voltages across the turns depend not only 
on t~ei:r positions relative to the plane of symmetry of the inductor, but also on the posi- 
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Fig. 3 

tion of the conductor relative to the inductor. For convenience Fig. 3 shows curves for 
three turns only. The qualitative pattern for the remaining turns is similar. The values 
of the voltages at t = 0 for the second, fourth, and sixth turns are plotted along the axis 
of ordinates. The values of the voltages across the second, third, and fourth turns are 

negligibly different from one another. 

The numerical values of the magnetic field appear alongside the field linesshown in 
Fig. 2. The figure also shows the current density distribution over the cross sections of 
the conductor and the turns of the inductor at the instant of the first current maximum 
(t/t b = 17). It is clear from Fig. 2 that the center of the magnetic field lines is dis- 
placed tO the third turn due to the presence of the conductor. This is accounted for by the 
fact that the voltages across the first and fifth turns are the same; and differ slightly 
from the voltages acrossthe second, third, and fourth turns. The displacement of the cen- 
ter of the EMF lines in a similar way affects the current density distribution over the cross 
sections of the turns. In addition, it follows from Fig. 2 that the current is distributed 
practically over the inside of the inductor only, due to a combination of the p~oximity ef- 
fect and the "bobbin" effect. Therefore, in contrast with "two-dimensional" systems, in this 
case the current density redistributiononly over the "working" surface of the inductor is 
more pronounced. Calculations for various inductor thicknesses for a constant accelerated 
mass showed that for inductors thicker than two equivalent skin layers (with the discharge 
frequency determined by assuming the discharge through a "dead" inductor) the final velocity 
of the conductor was practically unchanged. For a decrease in the thickness of the induc- 
tor to less than two equivalent skin layers, the velocity of the conductor is decreased. 
This is caused by the decrease of the current in the inductor, which in turn occurs because 
of an increase in its resistance. For an inductor thickness equal to an equivalent skin 
layer, the velocity of the conductor is ~75% of the limiting value. 
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CRACK GROWTH IN A SATURATED POROUS MEDIUM DUE TO PASSAGE OF A CURRENT PULSE 

V. I. Selyakov UDC 622.245.5/088.8 

A solution has been obtained [i] for the growth of a crack in a continuous medium in re- 
sponse to the thermoelastic stresses produced by passing a current perpendicular to the crack. 
Here we consider a model describing the action of a current pulse on a saturated porous med- 
ium when the current flows through a crack filled with liquid of high electrical conductivity. 
It is assumed that the medium has a skeleton of low electrical conductivity and is penetrated 
by capillaries filled with an electrically conducting liquid. Then the effective conductiv- 
ity Oo is determined by the microcapillary conductivity. We consider the case where the di- 
rect current is passed through two coaxial elliptiGal cracks filled with liquid having a high 
conductivity oi. The crack opening is characterized by the parameter B = c/l, where c is crack 
width and ~ is length. If the crack is very much open (B >> Oo/Ol), the current supplied to 
the center of the crack will emerge from the ends, and near the ends the current density will 
be maximal, as will the corresponding ohmic losses. The heating in the pores increases the 
pore pressure and may cause the medium to fail at the crack vertex. Here we use methods from 
the theory of complex variable functions to solve the two-dimensional problem on the current- 
density distribution around a crack, and the Blot theory [2] is used to discuss the consolida- 
tion of ground and to estimate the parameters of the electrical pulse that disrupts the medium. 

i. Current-Density Distribution. We consider the current-density distribution when the 
current flows through two elliptical cracks, with the source and antisource at the centers of 
these. We assume that the current is supplied through parallel infinitely long electrodes 
whose transverse dimension is much less than the crack width. The conductivity of the elec- 
trodesis much larger than that of the liquid within the cracks. This enables one to restrict 
consideration of the planar two-dimensional case. Figure 1 shows the track geometry. The po- 
tential distribution in a plane perpendicular to the electrodes satisfies the Laplace equa- 

tion [3] 
div(%v~v) . . . .  ( I / 2 ~ ) [ 6 ( =  - -  ~ , )  - -  6(z -- z2)], ( i . i ) ,  

where v = 1 or 0. Here the potential q~ with subscript v = 0 corresponds to the region out- 
side a crack, while that with subscript v = 1 corresponds to the region within the crack, z = 
x + iy is the complex variable, x and y are Cartesian coordinates, zl and z2 are the coordi- 
nates of the centers of the first and second ellipses correspondingly, I is the current in- 
jected into the crack per unit electrolength, and ~(z) is a Dirac function. The conditions 
for continuity of the potential and the normal component of the current density should be 
satisfied on the crack. We introduce the complex potential F v = o~ v and write these condi- 

tions in the form 

ReFu--~ReFl; (1.2) 

! 

I 

Fig. 1 
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